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We study the F terms in/= 1 supersymmetricd =4 gauge theories arising frob(p+ 3)-branes wrapping
supersymmetri@-cycles in a Calabi-Yau threefold. ff is even the spectrum and superpotential for a single
brane are determined by purely classical {~0) considerations. Ip= 3, superpotentials for massless modes
are forbidden to all orders in’ and may only be generated by open string instantons. For this latter case we
find that such instanton effects are generically present. Mirror symmetry relates even apdaaddthus
perturbative and nonperturbative superpotentials; we provide a preliminary discussion of a class of examples of
such mirror pairs.

PACS numbds): 11.25.Mj

[. INTRODUCTION trivial superpotentials in heterotic compactificatigfg,12.2
In this work we will study the effects abpenstring instan-
The study ofD-branes in Calabi-Yau threefolds is of both tons onD-brane physics, in particular on the superpotential.
formal and phenomenological interest. As philosophicalFor branes wrapping even-dimensional cycles, we will find
tools, Calabi-Yau threefolds provide a natural arena forthat superpotential can be determined from classical geom-
studying nonperturbative stringy geometBrbranes are ex- etry; for branes wrapping special Lagrangian cycles it is gen-
cellent probes of this geometry as they are sensitive to struerated entirely by nonperturbative worldsheet effects.

ture well below the string scaléat weak string coupling This has interesting implications for mirror symmetry in
[1,2]. Furthermore a deep understanding of mirror symmetnthe type Il compactifications. To begin with, if a given mir-
requires understanding its action Brbraneq 3-5]. ror pair of cycles has massless deformations with a nontrivial

The phenomenological interest is served by studyingsuperpotential, then the classical moduli spaces will not
space-fillingD-branes in type | or type Il string theories, in match under the mirror map. A holomorphic 2-cycle with its
configurations preservingy=1 supersymmetrySUSY) in infinitesimal holomorphic deformations obstructed at some
four dimensions. These configurations fall into two classes nontrivial order(so that a 5-brane wrapped around it will
[6,7]: 6-branes in type IIA wrapping special Lagrangian have massless chiral fields with a superpoteniid@l have as
cycles of the threefold, and odu-branes in type | or type its mirror a 3-cycle, which has flat directions to all orders in
[IB wrapping even-dimensional cycles. The latter configura-a’. On the other hand, if we start with a special Lagrangian
tions (up to orientifold$ can be written as coherent sheavescycle and find that worldsheet instantons destabilize or make
on the threefold 3,4,8 (or its mirron and so involve the nonsupersymmetric thB-branes wrapping them, the mirror
same type of data as heterotic compactificatihd0]. The  will, respectively, either not exist or will be some classically
D-brane limit allows one to study gauge-field data when it isnonsupersymmetric configuration. This is reminiscent of a
intrinsically stringy (much as Landau-Ginzburg compactifi- common feature of dualities 0¥=1 gauge theories, where
cations allow one to study intrinsically stringy aspects ofsuperpotentials generated by nonperturbative dynamics are
geometric datp via open string techniques. dual to tree-level superpotentigls6]. However, it is a rela-

In closed-string compactifications on Calabi-Yau three-tively novel situation forA/=1 dualities of string vacua,
folds, worldsheet instanton effects are the most well-where normally instanton effects map to instanton effects, as
understood source of truly stringy physics. They drasticallyin heteroticF-theory duality [17]. Here mirror symmetry
modify the geometry at short distances: in addition they leagshould provide a powerful tool for summing open string in-
to interesting physical effects such as the generation of norstantons, as it does for closed string worldsheet instantons

[18]. Note that the nonperturbative superpotentials we are
discussing here are not explicable in terms of gauge dynam-

The standard caveat is in force here: in order to satisfy Gauss’
law for the various Ramond-RamoriR&R) charges, one should ei-
ther consider branes wrapping cycles in noncompact Calabi-Yau ?In fact, it has been proved ifL3] that the most easily realized
spaces, or consider configurations containing both branes and oftreterotic(0,2) models, those realized as gauged lineamodels
entifolds. For our purposes the former assumption will suffice, bu{14,15, are not destabilized by worldsheet instantons. As we will
many of our considerations could also be applied to lower dimensee in the following, it should be easier to find exampleBddfrane
sional, non-space-filling branes wrapping the same cycles. models which exhibit disc instanton generated superpotentials.
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ics involving the (perturbativeé D-brane gauge theory; we will discuss the associated gauge theories of each class in

would expect in some circumstances the instanton effectsirn.

will be related to gauge instantons of reonperturbative

D-brane gauge theory that arises at singular points in the A. A-type branes

brane moduli space. This is analogous to the fact that in

heterotic(0,2) models, worldsheet instantons can sometimes 1. Spectrum

be related to gauge instantons of nonperturbative gauge In the large-volume, large-complex-structure limit, super-

groups arising from singular compactificatigris)|. symmetricA-type branes wrap special Lagrangian submani-
In this paper we will begin to investigate disc instantonfolds. Let such a manifold be described by a map

effects by asking whether nonperturbative superpotentials

are generically generated by worldshédisc) instantons. f:3—M.

We will find a story similar to that of the heterotic string

[12]: when the open string instantons are isolated, nonvanRecall that special Lagrangian submanifolisare defined

ishing (locally) runaway potentials may be generated. by the properties that

The plan of our paper is as follows: in Sec. Il we will
review the construction oV=1 four-dimensional theories dim,.s. = Edim M
via space-fillingD-branes wrapped on Calabi-Yau threefolds ft 2

in type Il string theory. After discussing the results deter-

mined by classical geometry, we will discuss some con- f*w=0, (2.1
straints from string theory. First, at tree level the superpoten-
tials are computable via topological open string theory, and f*(Ime'’Q)=0,

the hypermultiplets of the background closed-string theory
decouplef20]. Furthermore, we will find that in the case of wherew is the Kaler form of M, Q is the standard holo-
D6-branes wrapping special Lagrangian three-cycles, supemorphic (3,0 form ande'? is some phase.
potentials are forbidden not only classically but to all orders N D6-branes wrapping a single supersymmetric cycle
in «’, due to a Peccei-Quinn symmetry. Superpotentials i, CM have a U{) vector multiplet arising from massless
these cases can only be generated by topologically nontriviapen string excitations polarized completelyfifi. Massless
disc instanton effects. In Sec. Il we will discuss the genericopen string excitations polarized i form adjoint U(N)
superpotential terms that are allowed in the presence of aghiral multiplets. We will focus on the casé=1. To lowest
isolated holomorphic disc. Finally, in Sec. IV we discussorder ina’, the counting of massless chiral fields has been
promising directions for future work. Further results in ex- worked out>. lives in a family of deformations with dimen-
plicit examples will appear in a companion pap2t]. sionb,(2) [25] (cf. also[26] for a clear discussion More
There is a close relation between the ideas discussed isrecisely, each basis vector in the tangent space to the space
this paper and earlier work of Wittgi22] and Vafa[23]. As  of deformations may be used to construct a nontrivial har-
this work was being completed, we were also informed ofmonic one form or®, and vice versa. Of course the space of

the related work24] by mathematicians. such deformationpwhich has real dimension, (3)] cannot
make up our set of chiral multiplets which are built from
Il. CLASSICAL GEOMETRY OF D BRANES ON CY; complex scalars: for example;(3) need not be even. How-

ever, deformations of flat connections of thé-brane gauge
We begin withD-brane configurations preserving four su- field onS also map one-to-one onto the space of harmonic
percharges, to lowest order @y and ', in type Il string  one forms or, roughly because there is a Wilson line of the
theory onM x R* whereM is a Calabi-Yau threefold. We (1) gauge field around each one cycle. Thus for each ele-
will assume that th@®-branes fill all of spacetime so that we ment of the spacé{1(3) of harmonic one-forms o one
realize anN=1, d=4 gauge theory. has two real flat directions which may be described by a
The internal configurations preserving four supersymmeromplex scalaf5]. In other words, we find,(S) massless
tries fall into two classe$6,7]: “A-type” branes wrapping  chiral multiplets, one for each nontrivial one-cycle or har-
special Lagrangian submanifolds of the threefold, andygnic one-form ors..
“B-type” branes which wrap holomorphic cycles of the  Note that if we have branes wrapping severalitually
Calabl—Yau.(The.Igtter may have nontrivial hoIomor.ph|c supersymmetric3-cycles, then we may get additional matter
gauge bundles living on them as well, corresponding tGrom any intersection points, in bifundamentals of thelJs
bound states with lower-dimensional branes. We will for thegf each cycle. A local example of this was discusseRif.
most part ignore this possibilityln the present discussion |, this work we will discuss branes wrapping single “primi-
these exist in the type IIA and IIB theories, respectively. Wetje” 3 cycles: however, as explained {i27], interesting
transitions to this more complicated case can occur as one
varies backgroundclosed string hypermultiplets.

However, in contrast to the heterotic string story, the classical A natural choice of coordinates on the moduli space of the
moduli spaces of the brane configurations we will study are natuwrappedD6-brane is the followind23,28. Let {y;} be a
rally compact. Hence, the superpotentials we find will have minimabasis forH,(%). Choose minimal area disd3; subject to
which are not “at infinity” in field space. the condition that
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D=7, (2.2 If the boundary maps to a topologicalhortrivial cycle
¥;C2, this argument fails. Such discs are nontrivial ele-

and let ments of the relative homology clagd,(M,Y). These
worldsheets will give terms weighted by the instanton action:

Wj=vaw- (2.3 o (wjia/a’ 2.7

J

In other words, if there is a holomorphic disc in the relativewherew; is the spacetime area of this disc as in E3),
homology class oD, thenw; will be the area. Thav; pro- anda; is its partner Wilson ling2.4). Thea' dependence is

vide b;(3) real coordinates. They are complexified by decidedly nonperturbative. Note that to obtain the contribu-
b,(3) Wilson lines tion (2.7) to the action, the maj (o) must be eholomorphic

map from the disc tdvl with the desired boundary, and with
the normal derivative t&X (o) at the boundary taking values
L A, 2.4 in the pullback of the normal bundle t; this is a disc
instanton. It follows from standard arguments that only such
whereA is the U1) gauge field on the wrapped brane. The holomorphic maps have the correct zero mode count to con-
coordinates in Eqg2.3) and(2.4) are the real and imaginary tribute to a superpotential term in the spacetime theory.

aj:

i

parts of scalar components of thg(2) chiral multiplets®; The second argument is a spacetime argument. The space
on the brane: of U(1) Wilson lines on a circle is the dual circle. Thus, any
function of the chiral fields appearing in the effective action
Oi=w;+ia;+---, (2.5  must be invariant under discrete shifts of their imaginary

parts. Holomorphy then requires that the superpotential be a
where- - - indicates higher components of the superfields. power series in expf[w;+ia;)/a’), which again gives a non-

perturbative dependence aii.
2. Superpotentials and worldsheet instantons

As noted above, it follows from McLean’s theordi®5] 3. Examples of three-cycles
that at lowest order i’ the brane wrapping, has a moduli The best-known example arises in the Strominger-Yau-
space of dimensiob;(X). So far there may still be’ cor-  Zaslow formulation of mirror symmetrs]: the claim is that
rections which lift these flat directions. To lift moduli, one any geometric Calabi-Yau with a geometric mirror can be
would need to generate either D terms or F terms in thevritten as a fibration of special Lagrangi@f's. Mirror sym-
low-energy action; we will focus on the superpotential, sincemetry is fiberwiseT duality on thes&®'s. D3-branes wrap-
the chiral multipletsb; are neutralat least at generic points ping these fibers are mapped B0-branes on the mirror.
in the classical moduli space of the cyctnd do not appear The T2 hasb,=3 so all this is in accord with expectations:
in FI D terms. At leading order in’, the superpotential the mirrorD0-brane and thus the wrapp&®8-brane should
W(®) identically vanishes. We now determine to what ex-have a three-dimensional complex moduli spéetich is
tenta’ corrections of any sort are possible. the mirror threefolgl Many examples of special Lagrangian
In fact, it turns out that there are no corrections to thethree cycles can be found as fixed loci of real structures.
open-string superpotential to any finite orderdift all con-  Some examples, which are homeomorphidiie®, are con-
tributions must come from nonperturbative corrections, aristained in[6,20]. Note that these have 4t Wilson line de-
ing from topologically nontrivial configurations. The argu- gree of freedom asr,(RIP%)=7,.
ments are almost identical to similar arguments for the |n addition, there has been some discussion of local and
heterotic string11,12. We will give two. noncompact models. Referenf28] contains some general
The first argument is a string theory argument. TBe  discussion of noncompact supersymmetric three cycles. A
picture vertex operator for a flat connectidnat zero mo-  simple example with an isolated disc instanton is the follow-

mentum on théd6-brane has the form ing. Takez; , 3 as coordinates ofi®, and choose and(} to
be the obvious Kaler form and holomorphic three form.
V:f AL (X) 3 X dae, (2.6) Then the three cycl& defined by
dD
|2[*—t=[2%|?=]z5|?, 28

whereX are coordinates on the brane amccoordinates on
the worldsheeD. Let A be polarized completely internally, Im(z,2,23)=0, Rez,2,25)=0, (2.9

so that it corresponds to a c_h0|ce of W|I_'son Ilm_es_ around th%vith t positive is a special Lagrangian, and diffeomorphic to
elements oH,(X). If X(dD) is a topologically trivial cycle SIXR2. A generatory of H,(3) is given by the concrete

on X, thenA can be written as an exact ford\. We see choice

thatV vanishes after an integration by parts. Thus topologi-

cally trivial disc amplitudes give no nonderivative couplings y:{(t¥%!?,0,0)}, (2.10
(such as superpotential terjsf the imaginary parts of chi-

ral multiplets, to all orders im'. Holomorphy thus requires where# runs from 0 to 2r. A holomorphic disc with bound-
the superpotential vanish to all finite ordersdn. aryI' and arearrt is given by
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Dti{(Zl,OyO),|21|2<t)}- (2.11) In the end, even counting these chiral multiplets is a
harder problem on its face than fértype branes, as the
number of moduli depends not only on the intrinsic topology

B. B-type branes of the cycle but on the details of its embeddingvin(This is
In the large-volume, large-complex-structure limit, super-already apparent for rational curves in the quintic, cf.
symmetric B-type branes wrap holomorphic cycles bf.  [32,33.) Nonetheless, one may find a lot of specific ex-
One may also examine bound states which can be describéples for which computations are possible, especially for
as gauge bundles on the highest-dimensional brésfedor ~ rational curves.

example[20] for a discussion For simplicity we will focus ~_ Some additional constraints exist as f@type branes.
on branes wrapping primitive cycles, and in our examples wéirst, the computation of the disc contribution to the super-
will discuss cases wher@is a rational curve. potential can be reduced to Brtwisted open topological

For N (space-filling D-branes wrapping a given cycle field-theory calculation20]. Again the Kaler parameters
CCM one again has a W) vector multiplet arising from almost completely decouple from the superpotential: indeed,
massless open strings polarized along the spacetime dire#ie computations of the dimension Bf(C,A¢) and of the
tions. Massless strings polarized alaviggive rise to adjoint ~ Obstruction depend completely on the complex structure. But
chiral multiplets. Again we will focus omN=1. for B-type in addition, all contributions t@-model computations come

branes wrapping the infinitesimal supersymmetric defor- entirely from constant maps into the target spa84,22.
mations of the cycle are holomorphic sections of the normaf here are no worldsheet instanton corrections and tree-level
bund'e/\/’c' The number of such first-order deformations iS,O' model calculations will suffice: the Supel’potential can be
therefore, the dimensional of the space of holomorphic secdeduced from classical geometry.

tions, H°(C,\V;) (this is the cohomology group of the bundle _ _

N, not a relative cohomology grolpThese are the scalars 1. Examples of holomorphic curves and superpotentials

in the massless chiral multiplets. There is no guarantee that Many useful examples of holomorphic cycles exist in the
these deformations do not have an obstruction at highefterature. Several can be found or are referencd@® We
order? Such obstructions, if they exist, correspond to ele-are particularly interested in two-cycles with nontrivial ob-
ments of the grourb-ll(C,./\/c) [29]. More specifically, given  structed deformations.

an element of the cohomology grotf?(C,\;) one may try The canonical example is simply a small resolution of the
to construct a finite deformation by beginning with an infini- singular hypersurface ifi*:

tesimal deformation and constructing a finite deformation as

a power seriesH! measures the space of possible obstruc- xy=2z?—t?", (2.19
tions at each order in this series. Note that it may happen that

althoughH* is nonvanishing, there is still a solution for this (Such a small resolution is consistent with the Calabi-Yau
power series and thus a family of cycles. In the end, argndition as the space is noncompgctf n=1, then
obstructio.n should appear as a higher-ordgr term in the SU19(C,\;) =0, and the curve is rigid. Ifi>1, thenH(C,\)
perpotential for a brane wrapped around this cyel]. is one-dimensional—the normal bundle to this curve is
Furthermore, deforming the complex structurehdfcan O(0)® O(—2)—but there is an obstruction ath order to
also cause obstructions ¢previously existing deformations deforming this curve[35]. This phenomenon can be de-
of C. The basis statement is as folloyes. [30,31])). One may  g¢riped by a superpotentis¥(®)=d"*1 [20].
use the restriction map t© and the short exact sequence: It is easy to useW(®) to see the effect of a general

0 Teos Ty s Nos 0 2.12 deformation of complex structure @& We perturbwW(®) to

_ W(P)=D" 1+ tP(P) +O(t?), (2.19
to write a map
whereP(®) is an arbitrary polynomial imb subject only to
r:H M, Ty) —HYCAL). (2.13  the genericity conditiorP’(0)#0. SolvingW; ($)=0, we
getn solutions for the vacuum expectation val(M¥EV)
If we perturb the complex structure ®f to first order by
some elemenipeHY(M,Ty), a deformation ofC exists
which preserveg’ as a holomorphic cycle if and only if
r(p)=0. Note that couplings ofopen-string chiral multi-
plets to(background closed-stringomplex structure param- \yhere the dots denote higher-order terms ifihe geometric
eters in the superpotential are allowed and ger{@Gg. description of this perturbation of curves with normal bundle
O(0)®O(—2) to n rigid rational curves was well known
[36]. The geometric perturbation of contractible curves with
“For, e.g.C a curve of genug=1, there are also@Wilson line ~ normal bundleO(1)® O(—3) to rigid curves has recently
degrees of freedom which parametrize the flg)bundles onc.  been worked out ifi37] and can be rephrased in terms of the
These pair up intg chiral multiplets and provide exactly flat direc- perturbation of a superpotential if desired. The geometric
tions. Similar comments apply & is a four-cycle withb,(C) #0. description in the case of a genet@(1)® O(—3) curve is

P,(O) 1/n "

n+1

¢k(t) — e271'ik/n
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not yet worked out, but the introduction of a superpotential—= H1(0(—2)), we choose ourA to have A%: zgdz/\dz

can be expected to clarify the geometry.

2. Digression on holomorphic Chern-Simons theory

while the otherAi; vanish (we can always choose such a

gauge. Then the constant sectiorp, ®,)=(t,0) is holo-
morphic provided we set'=0. So thisA produces the re-

Another way to arrive at the superpotential in examplesquired geometry.

like Egs. (2.14 and (2.19 is by studying a holomorphic
analog of the Chern-Simons action, discussef223.> In
the following, we will suppress constants which enter harm
lessly in our formulas. We think of the Calabi-Yad as
being obtained from the total space of the normal bundl
0O(0)®» O(—2) by a modification of the complex structure.
We choose holomorphic coordinatesZ,,z;) on the normal
bundle, withz being a coordinate oG, z, being in O(0),
and z; in O(—2). The curveC is identified with the zero
sectionz,=z;=0. The modification of the complex structure
is realized as usual by perturbing by a tensorA}f, ie.,
Iy J+ A'].79i , whereA}fis aTM valued(0,1) for on M. We
assume that the curwe remains holomorphic, and want to
understand which deformatiors= ¢;(z) (i=0,1) remain
holomorphic. The spac€™ deformations ofC is identified
with the space ¢q, ¢,) of C* sections of the normal bundle
N¢. The relevant holomorphic Chern-Simons action is

fc[¢o<3+A‘;ai>¢l—¢1<3+A‘;ai>¢o]. (216

Note that in Eq.(2.16 we only use the inde}=z in A.
Equation(2.16) expands as

f C¢o3¢1+ GoAZIB1+ DohAT

~(hr0dot+ p1AZGo+ 1A (217
We make sense of this by, respectively, identifyipg, ¢,
with functions and1,0) forms onC (as would be expected in
the twisted brane world volume theof$8]), while, respec-
tively, identifying A%,A% with (0,1) and (1,1) forms after
pulling back toC. Thus all the terms in Eq2.17) are (1,
forms onC and can be integrated.

The variations of Eq9.2.16) or (2.17) with respect togpg
and ¢, give the conditions that the corresponding curveXin
is holomorphic. In fact, the action of the topological theory

on C actually becomes the superpotential in the four-

dimensionalN=1 theory arising from wrapping B5 brane

The variation of Eq(2.17) with respect tog, shows that
¢ 1s holomorphic. The variation of Eq2.17) with respect

to ¢y shows thaﬁl is a multiple of ¢3. Substituting these

&pack into Eq.(2.17 (and performing the integral over the

curveC, which just produces a volume factagives a mul-
tiple of d){}“, as claimed. This proves that for ay(0)
®O(—2) curve, the superpotential will be a polynomial of
degreek for somek (or will vanish identically—k is the
only invariant of the complex structure in some neighbor-

hood of the curve.

3. Another example

Another example which we will use was detailed in Ref.
[39] (see also Sec. 9 $81].) Here one has at a specific point
in the complex structure moduli space Ap singularity fi-
bered over a genug-curve S. At this point the collapsing
cycles obviously form a family which is precisely Defor-
mations of the complex structure & destroy this family,
generically leaving 8§ — 2 isolated curves. One may finaj2
three-cycles by sweeping the collapsing curves over the one
cycles ofS, mappingH(S) to H3(M).® This can be lifted to
a map fromH®9(S) into HZY(M)=HY(M,T,,) [39,31].

This givesg-independent first-order deformations of com-
plex structur€. We can use the mapEq. (2.13 to project
the relevant deformation ontd*(\) for each fiber of this
collapsing surface. Now the spadé$(.\) are the fibers of a
bundle overS, and this bundle is identified with the canoni-
cal bundle ofS. So Eq.(2.13 gets included the sequence of
maps

HOO(S) —HLY(M, Ty) —HYS,Ky). (2.18
This says two things. First of all, first-order differentials&n
lead to first-order deformations of complex structure, realiz-
ing g deformations of complex structure. Second, upon per-
turbing by such a complex structure deformation, the only
curves which survive the deformation are those which are
located at zeros of the associated sectiofiKgf Thus gen-
erally we will find a set of isolated curves with only massive
chiral multiplets. However, at codimension one in the com-

onC. This is because the holomorphic Chern-Simons theory

is the string field theory for the open string topologi&al

model[22], and therefore its action is the generating function °This is closely related to the formula for the superpotential in

of the topological correlation functions which give rise to
superpotential terms in the physical theory.

[40]. Fixing a pointsy e S, then a path frong, to se S sweeps out
a 3-chain inM, which can be integrated over a holomorphic 3-form,

To illustrate this fact. we now show that we can choosegdefining a function of. If we define the potential this way in our

our tensorA so that Eq(2.17) becomedV(®)=d" "1, Since
the obstructions to deformingC lie in HY(A)

context, there is a multiplicative ambiguity from the choice of ho-
lomorphic 3-form, reflected in the description in the main text by
the choice of isomorphisril @Y(M)=H(M,Ty).

If M arises from Batyrev's construction of Calabi-Yau toric hy-
persurfaces by blowing up the cuné&of A; singularities, these

SWe thank C. Vafa for pointing this out to us, and D. Diaconescudeformations of the complex structure Mfare those which are not

for related discussions.

realizable by polynomial toric deformations.
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plex structure moduli space, zeros of the sectioigfwill ~ While this formula is simpler in form than E(.19), it does
coincide and the resulting curve will have higher multiplic- not capture the global structure of the moduli sp&ce
ity: their deformations will be massless but obstructed at The above considerations are easily adapted to the more
some higher, nontrivial order. general situation considered[i@9], where anAy singularity

A superpotential which reflects this geometry be con-is fibered overS. If we denote the collapsing curve as
structed as follows. Let the complex structure deformation b&c1U, . .. ,UCy, then for eaclC; we getg deformations of
induced as above from an elemante H9(S). At w=0  complex structure arising as in E@.18), yieldinggN com-
the curve lives in a family which is precisel§ so that a plex moduli. But we also have connected subsets

deformation of a curve ate S described byV can also be CUCy1U, ...,UC, to which the above analysis ap-
written as an elemens e T(M9S. One may then write the plies. But since the first map in E(2.18 depends linearly
superpotential as on the individualC; , including these connected subsets does

not give rise to any new complex structure deformations. So
we get N(N+1)/2 superpotentials of the forrf2.19 on
N(N+1)/2 copies ofS, each of which depends on the
gN complex moduli(only g of which appear in any one
superpotentiadl Each of these superpotentials controls
the obstructions to deforming curves of the form
CUCy1U, ..., UC,,, and Z—2 curves of this type
Here @ is the superfield associated #30 is the Dolbeault syrvive a generic deformation of complex structure.
operator onS and(, ) is the usual inner product between

forms and vectors. It is understood that one is to evaluate the

W(D;0w)=(w,P)+ %(ﬁ(w,@},@)

+%<(9<(9<w,®>,¢>,®>+"'- (2.19

inner product at the poiri e S around which one is expand- IIl. DISC INSTANTONS
ing, and convergence follows from the convergence of the . .
power-series representation @f For S of genusg, the ex- Type 1l string theory in the presence offxbrane on a

pansion in Eq.(2.19 can be truncated afterg2-1 terms  given special Lagrangian submanifold has the same net num-
without changing the location and structure of the criticalber of worldsheetand spacetimesupersymmetries as a het-
points. The closed string complex structure moduli act agrotic (0,2 model; and as with heteroti®,2) models, the
parameters in the superpotential, through the choice.of nonrenormalization theorem for the spacetime superpotential

Let us explore the properties of E(.19 slightly more is spoiled by worldsheet instanton effects. In light of results
explicitly, to illustrate its features. Consider expanding Eq.for (0,2 models[12], it is fair to ask whether the generic
(2.19 about some point 08§ wherew has an expansion in a D6-brane configuration is nonperturbatively stable.

local complex coordinate: We expect direct calculations of instanton effects to be
difficult. But instantons in supersymmetric theories generate
w~Zz"dz (2.20  fermion zero modes which provide selection rules for con-

formal field theory (CFT) correlators. Using the rule of
We can represent the scalar field, which we are thinking of aghumb that allowed terms are generic, we will see that three
a tangent vector t&, as ¢d/dz with ¢ complex. Then, ex- cycles with an isolated disc instanton are destabilized
panding Eq(2.19 aroundz=0, we find nonperturbatively. The argument is quite similar to that for
heterotic(0,2) models.

The easiest way to count the zero modes for an isolated
holomorphic disc is to begin with the amplitude for the
sphere and get the disc by orbifolding with respect to a real
involution, which will cut the number of zero modes in half.
For an isolated sphere, the superconformal symmetry to-

ether with an index theorem shows that there are four ho-
omorphic zero modes and four antiholomorphic zero models

genusg, o will generically have 2— 2 isolated zeros, giv- [12,41], so we expect four fermion zero modes on the disc.

ing rise to —2 massive supersymmetric vacua at generic Consider a singl®6-brane wrapping a special Lagrang-

points in the space of background closed string parameter'san three-cycleX.. The complex modulug=w + ia is asso-

At various codimensions in the closed string moduli spaceC'at(ad with a cycley e Hy(2), using the notation and defi-

o o hitions of Sec. Il A. Here we assume the isolated instanton
as one further specializes the multiplicities of the zeros pof : o o
. . o -, corresponds to a dida such that’D =y andD has minimal
these 3—2 vacua merge in various combinations to yield

i ; ) . area. The most obvious, lowest-order term consistent with

theories with massless fields obstructed by higher order po- bati lization th is th

tentials. qulr perturbative nonrenormalization theorem is the exponen-
A simpler way to write Eq(2.19 locally on S is to write ta

w=df, for a locally defined function o&. Locally, such an

f can be thought of as a function @f. Then we simply have

W(P)~ DL,

For n=0 (i.e., around generic points af) there is no su-
persymmetric vacuum, while fan>0 there are supersym-
metric vacua. Fon=1, the vacuum is massive; for>1
there is a massless field, and the vacuum splits imtal
massive vacua upon small perturbations of the comple
structure ofM [just as in the situation of E¢2.15)]. For S of

®Holomorphic discs ending on special Lagrangian cycles of
W(D,w)=F (D). Calabi-Yau threefolds are generically isolaf@@].
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—a—®la’
wWie)=e @ b $ § axoxdeAcAAX) (39
Yy Jr Jy

where ®@ is the superfield corresponding . This will

clearly destabilize the wrappedlé-brane, at least locally. (g phressed by the exponential of the area of the holomor-
We will search for the superpotentie8.1) by examining  ppic disg, where the gauge fields, can be identified with
small fluctuationsp; away from the above classical configu- 1,4 one-formg' in Eq. (3.3). Once again, for given positions

ration ®o=¢. Herej is an index inH(%). The lowest-order i, 1o integrand, the ordering of the vertex operators for

terms directly compgtable via a CFT correlator will be thoseAi'j‘k must match the ordering of , 5 respectively.
arising from the cubic term

The result is that the superpotentidll) is generic for an
isolated instanton. With some interpretation added, this state-
ment matches a calculation in R¢22]. There it is shown
that the string field theory for the topological open striang
model is equivalent to Chern-Simons theory Brwith in-

stanton corrections to the action. This instanton correction
Scubicch d*x¢iiFy, (3.2  can be interpreted precisely as the superpotential we have
calculated, as it generates the topological correlator we have
whereF, is the auxiliary field in®, . Note that in the reduc- discussed. Note that if22], the dependence on the area of
tion to four dimensions, the operators above are arrived at bje disc was added as a convergence factor, whereas in our
contour integrals ir®, soC is proportional to a triple inte- discussion it is required by spacetime supersymmetry.
gral. The topological string theory representation of the super-

The vertex operators which enter in the calculation of Eq_potential allows us to write the full worldsheet instanton con-
(32) are eas"y presented in the covariant RNS forma"sn{ribution to the CFT Correlatdl35). FirSt, note that while we
[42] (cf. [20] for a general discussion of the CFT calculation have discusseé; as a harmonic form, we can modify it by
of open-string superpotential term3he (— 1)-picture zero- adding a BRST-trivial piece to give it support only in an

q)iq)jq)kefgbla'.

We will focus on the term

momentum vertex operator for the scalar compongis arbitrarily small neighborhood around a two-cyg@ewhich
~ is Poincaredual to y;. The result is as follows. Denote by
ViD= 6 (X)yre?, (3.3 d%;ﬁ (i,j,k) the number of holomorphic maps from a disc
~ . ) . to M where the imag® CM has the following propertie$:
where ¢ is the bosonized superconformal ghp42], 6!, is (i) [oD]==,m ¥ .
the harmonic one-forntassociated withy;) on the 3-cycle, (i) The vertex operatorg''* are mapped in cyclic order
and* is a fermion with Dirichlet boundary conditions. The o intersections ofy= 9D with 3; ko respectively:’
(0)-picture vertex operator for the auxiliary field[i43] (i) D—=,mD,, which is a closed two-cycle iM, is in

the homology clas& ;n,K,. Then, the three-point function

(0).j — i ~O v
Ve _Qpﬂv(x)evg PPy (3.4 receives a contribution

Here Q) is the (3,0) form, with the coordinategbut not the
indices restricted toX . Equation(3.4) is obtained by apply- (ViFVJd)V'fﬁ>~ 2 (J ai) (f GJ)(J' ak)
JD JD JD

ing the unit spectral flow operatof,,, .y " as in m>0,na=0
[43.10. . . b'(x) htl(m)
The three-point function ><d?,]f§<i11,k)ﬂ e-mw+iapia’ T e nata
I=1 a=1

(Vv IVERE) (3.5 .

has the correct fermion and ghost number to be nonvanish-
ing; in an instanton background, the four fermions in thefrom disc instantons, wherg, denotes the integral of the
vertex operators in Eq3.5 can soak up the relevant zero Kahler form overK, (and for simplicity we are setting the
modes. Note that we are computing the integrand of thelosed string backgrounB field to zerg. Although we have
triple integral definitionC in Eq. (3.2). Since holomorphic
maps will preserve the order of marked points on the bound=———
ary’.t.he OTde”.”g. of Eq3.5) will be fixed for a given set of °As with “numbers” of rational curves in mirror symmetry, the
pOSItI_OnS in this Inte_grand. . correct notion ofd when there are families of discs and/or including

This superpotential term can equivalently be computed ag,ytiple covers would require much further discussion; we will be
a correlator in the topologicah-model open string theory ontent here to be schematic. A proposal for the multiple cover
[22,20]. Here one is computing the contribution to B8.5  contribution has recently been worked out by H. Ooguri and C.
[or more familiarly, a Yukawa coupling related to .5  vata[44].
by supersymmetrlyin a sector where the map of the world-  %0ne has to be careful if two vertex operators correspond to the
sheet to spacetime is a disc whose boundgfZ. is topo-  same cycle. The support @ can be made arbitrarily small but
logically nontrivial. The path-integral localizes onto the finite. In this way nonzero contributions still generically come from
space of holomorphic maps, and the contribution is the vertex operator insertions mapping to different pointy.in
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mostly used the language of the topological theory in derivnarios. In this paper, we have shown that the theories which
ing this result, it also holds for the three-point function in thearise fromD 6-branes wrapping supersymmetric three-cycles
physical theory. are in many ways analogous to heterof;2) models. In
The same kind of instanton sum also appeard28],  particular, although they are supersymmetric to all orders in
where the interpretation in terms of a superpotential fory’ nonperturbative worldsheet effects can generate superpo-
wrapped branegand in particular the fact that these effects tentials and, perhaps, break supersymmetry.
serve to obstruct the deformations of branes wrapped on spe- These models differ from heterotic theories, however, in
cial Lagrangian cyclgswas not discussed. that mirror symmetry provides a dual description where the
nonperturbative superpotential is computable at tree level in
o-model perturbation theory. This should be a powerful tool:
It is clear from the form of the three-point functio(@7) most known dualities of /=1 models, like heterotic—
that the superpotential depends on the closed string back:-theory duality, relate instanton computations to other in-
ground Kaler moduli, which enter through the worldsheet stanton computationéwith worldsheet instantons mapping
instanton actiore”'a. The dependence of the disc instantonto Euclidean wrapped branes of various sdit§]). The
generated superpotential onidar moduli, and the fact that present situation is considerably rosier, and it will be very
it does not depend on the background complex structureinteresting to exploit this to sum up instantons in this class of
moduli in the IIA theory, is consistent with the nonrenormal- V=1 and it will be very interesting to exploit this to sum up
ization result of( 20]. instantons in this class df/=1 string vacua.
We can directly probe the dependence of the superpoten- The cases discussed in Sec. 1(8n the B-model sid¢
tial on closed string moduli by computing the CFT correlatorshould provide ideal test cases. In each case, one can realize
_ (on a 5-brane wrapping a holomorphic cuneetheory with
(Vi DavEM), (3.8 massless chiral fields, constrained by a higher-order superpo-
(-1-1)a ; ~ tential. The mirrorD6 theory should provide us with an
where Vi % is the vertex operator for a closed-string example of a brane wrapping a supersymmetric three-cycle
Kahler deformation. Again, the vertex operators in E3}8) S, with by(2)>0, but without a moduli space of the ex-
can absorb the fermion zero modes which are present in afected dimension. By the nonrenormalization theorem of
instanton background. In fact, the “mirror” couplings of sec. 1A, the moduli space on th&-model side must be
open strings to background complex moduli in the superpotifted by a disc instanton generated superpotential. Work to
tential generically exist at tree level in tfemodel[20l—  explicitly construct the mirror cycles, and compute the rel-
this is clear from the examples of Sec. Il B, where a smalleyant superpotentials, is under wgga]. Note that nonper-
perturbation of complex structure can obstruct families oftyrbative superpotentials which obstruct deformations of
holomorphic curves. The coupling3.8) must then similarly  pranes wrapped on three-cycles can resolve the puzzle for
exist, but due to Peccei-Quinn symmetries they should arisgjrror symmetry raised by Thomas [@5]. On the other
at the nonperturbative level in both the closed and opemand, we expect, e.g., the supersymmeticused in[5] to
string worldsheet instanton expansions. derive mirror symmetry will survive instanton corrections. In
k represents an integral,1)-form w, which could be  the mirror picture this is obviougsince deformations of a
used to perturb the Kaer form of M. We can choose, to  point are unobstructg¢dand in the direct analysis presum-
have support only infinitesimally near the four-cytBCM  ably any holomorphic discs with boundary on tf& would

Coupling to closed string background fields

Poincaredual toK,. Then, Eq.(3.8) has the expansion come in families and cancel in their contribution to the su-
perpotential.
Vv(-l-Day f f i | gino! aj In_the regime where there are “small” holomorphlq discs,
(Vi ) my %20 @a D {ml}( ) new interesting phenomena should also occur. For instance,

there are arguments in the mathematics literature that in
i i) ot some cases the classical moduli spaces of special Lagrangian
X |1;[1 e T bﬂl e bo, three-cycles will be manifolds with boundatyee Sec. V of
[28]). This cannot be the case for physical applications of the
(3.9 sort we have discussed, involving wrapped branes in string
el ) theory. The moduli spacéncluding Wilson line degrees of
whered, (a,]) counts the number of holomorphic maps 1o freedom is that of a 41 A'=1 supersymmetri©-brane field
discsDCM which pass through? at the insertion point of ~theory. Assuming supersymmetry is not broken, the quantum
Vg andg; at the insertion point 0¥/}, and which in addition ~moduli space of supersymmetric ground states must be a

b1(3) h,1(M)

have[ 9D ]==,m;y, and[D —=,mD,]=pn,Ky . Kahler manifold; there is no known dynamics that can create
boundaries at codimension one in the moduli space f 4
IV. DISCUSSION N=1 supersymmetric theories. The argument[?8] in-

volves the fact that a holomorphic disc with boundary in the
Space-filling D-branes wrapping supersymmetric cyclesthree-cycle is becoming very small; therefore, it is likely that
in Calabi-Yau manifolds provide one of the most naturalsome analog of the phenomena discussefll# is occur-
classes of\V'=1 supersymmetric models in string theory, andring. Just as one can usgkangles to go around the bound-
are attractive as concrete realizations of “brane world” sce-aries of the classical Kder cone and find intrinsically stingy
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