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Open string instantons and superpotentials
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We study the F terms inN51 supersymmetric,d54 gauge theories arising fromD(p13)-branes wrapping
supersymmetricp-cycles in a Calabi-Yau threefold. Ifp is even the spectrum and superpotential for a single
brane are determined by purely classical (a8→0) considerations. Ifp53, superpotentials for massless modes
are forbidden to all orders ina8 and may only be generated by open string instantons. For this latter case we
find that such instanton effects are generically present. Mirror symmetry relates even and oddp and thus
perturbative and nonperturbative superpotentials; we provide a preliminary discussion of a class of examples of
such mirror pairs.

PACS number~s!: 11.25.Mj
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I. INTRODUCTION

The study ofD-branes in Calabi-Yau threefolds is of bo
formal and phenomenological interest. As philosophi
tools, Calabi-Yau threefolds provide a natural arena
studying nonperturbative stringy geometry.D-branes are ex-
cellent probes of this geometry as they are sensitive to st
ture well below the string scale~at weak string coupling!
@1,2#. Furthermore a deep understanding of mirror symme
requires understanding its action onD-branes@3–5#.

The phenomenological interest is served by study
space-fillingD-branes in type I or type II string theories, i
configurations preservingN51 supersymmetry~SUSY! in
four dimensions.1 These configurations fall into two classe
@6,7#: 6-branes in type IIA wrapping special Lagrangia
cycles of the threefold, and odd-p branes in type I or type
IIB wrapping even-dimensional cycles. The latter configu
tions ~up to orientifolds! can be written as coherent sheav
on the threefold@3,4,8# ~or its mirror! and so involve the
same type of data as heterotic compactifications@9,10#. The
D-brane limit allows one to study gauge-field data when i
intrinsically stringy ~much as Landau-Ginzburg compacti
cations allow one to study intrinsically stringy aspects
geometric data!, via open string techniques.

In closed-string compactifications on Calabi-Yau thre
folds, worldsheet instanton effects are the most w
understood source of truly stringy physics. They drastica
modify the geometry at short distances: in addition they le
to interesting physical effects such as the generation of n

1The standard caveat is in force here: in order to satisfy Ga
law for the various Ramond-Ramond~RR! charges, one should ei
ther consider branes wrapping cycles in noncompact Calabi-
spaces, or consider configurations containing both branes and
entifolds. For our purposes the former assumption will suffice,
many of our considerations could also be applied to lower dim
sional, non-space-filling branes wrapping the same cycles.
0556-2821/2000/62~2!/026001~9!/$15.00 62 0260
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trivial superpotentials in heterotic compactifications@11,12#.2

In this work we will study the effects ofopen-string instan-
tons onD-brane physics, in particular on the superpotent
For branes wrapping even-dimensional cycles, we will fi
that superpotential can be determined from classical ge
etry; for branes wrapping special Lagrangian cycles it is g
erated entirely by nonperturbative worldsheet effects.

This has interesting implications for mirror symmetry
the type II compactifications. To begin with, if a given mi
ror pair of cycles has massless deformations with a nontri
superpotential, then the classical moduli spaces will
match under the mirror map. A holomorphic 2-cycle with
infinitesimal holomorphic deformations obstructed at so
nontrivial order ~so that a 5-brane wrapped around it w
have massless chiral fields with a superpotential! will have as
its mirror a 3-cycle, which has flat directions to all orders
a8. On the other hand, if we start with a special Lagrang
cycle and find that worldsheet instantons destabilize or m
nonsupersymmetric theD-branes wrapping them, the mirro
will, respectively, either not exist or will be some classica
nonsupersymmetric configuration. This is reminiscent o
common feature of dualities ofN51 gauge theories, wher
superpotentials generated by nonperturbative dynamics
dual to tree-level superpotentials@16#. However, it is a rela-
tively novel situation forN51 dualities of string vacua
where normally instanton effects map to instanton effects
in heterotic/F-theory duality @17#. Here mirror symmetry
should provide a powerful tool for summing open string i
stantons, as it does for closed string worldsheet instan
@18#. Note that the nonperturbative superpotentials we
discussing here are not explicable in terms of gauge dyn

s’

u
ri-
t
-

2In fact, it has been proved in@13# that the most easily realized
heterotic ~0,2! models, those realized as gauged linears models
@14,15#, are not destabilized by worldsheet instantons. As we w
see in the following, it should be easier to find examples ofD-brane
models which exhibit disc instanton generated superpotentials.
©2000 The American Physical Society01-1
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ics involving the ~perturbative! D-brane gauge theory; w
would expect in some circumstances the instanton eff
will be related to gauge instantons of anonperturbative
D-brane gauge theory that arises at singular points in
brane moduli space. This is analogous to the fact tha
heterotic~0,2! models, worldsheet instantons can sometim
be related to gauge instantons of nonperturbative ga
groups arising from singular compactifications@19#.

In this paper we will begin to investigate disc instant
effects by asking whether nonperturbative superpoten
are generically generated by worldsheet~disc! instantons.
We will find a story similar to that of the heterotic strin
@12#: when the open string instantons are isolated, nonv
ishing ~locally! runaway potentials may be generated.3

The plan of our paper is as follows: in Sec. II we w
review the construction ofN51 four-dimensional theories
via space-fillingD-branes wrapped on Calabi-Yau threefol
in type II string theory. After discussing the results det
mined by classical geometry, we will discuss some c
straints from string theory. First, at tree level the superpot
tials are computable via topological open string theory, a
the hypermultiplets of the background closed-string the
decouple@20#. Furthermore, we will find that in the case o
D6-branes wrapping special Lagrangian three-cycles, su
potentials are forbidden not only classically but to all ord
in a8, due to a Peccei-Quinn symmetry. Superpotentials
these cases can only be generated by topologically nontr
disc instanton effects. In Sec. III we will discuss the gene
superpotential terms that are allowed in the presence o
isolated holomorphic disc. Finally, in Sec. IV we discu
promising directions for future work. Further results in e
plicit examples will appear in a companion paper@21#.

There is a close relation between the ideas discusse
this paper and earlier work of Witten@22# and Vafa@23#. As
this work was being completed, we were also informed
the related work@24# by mathematicians.

II. CLASSICAL GEOMETRY OF D BRANES ON CY3

We begin withD-brane configurations preserving four s
percharges, to lowest order ings and a8, in type II string
theory onM3R4 where M is a Calabi-Yau threefold. We
will assume that theD-branes fill all of spacetime so that w
realize anN51, d54 gauge theory.

The internal configurations preserving four supersymm
tries fall into two classes@6,7#: ‘‘A-type’’ branes wrapping
special Lagrangian submanifolds of the threefold, a
‘‘ B-type’’ branes which wrap holomorphic cycles of th
Calabi-Yau. ~The latter may have nontrivial holomorph
gauge bundles living on them as well, corresponding
bound states with lower-dimensional branes. We will for t
most part ignore this possibility.! In the present discussio
these exist in the type IIA and IIB theories, respectively. W

3However, in contrast to the heterotic string story, the class
moduli spaces of the brane configurations we will study are n
rally compact. Hence, the superpotentials we find will have mini
which are not ‘‘at infinity’’ in field space.
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will discuss the associated gauge theories of each clas
turn.

A. A-type branes

1. Spectrum

In the large-volume, large-complex-structure limit, sup
symmetricA-type branes wrap special Lagrangian subma
folds. Let such a manifoldS be described by a map

f :S→M .

Recall that special Lagrangian submanifoldsS are defined
by the properties that

dimRS5
1

2
dimRM ,

f * v50, ~2.1!

f * ~ ImeiuV!50,

wherev is the Kähler form of M, V is the standard holo-
morphic ~3,0! form andeiu is some phase.

N D6-branes wrapping a single supersymmetric cy
S,M have a U(N) vector multiplet arising from massles
open string excitations polarized completely inR4. Massless
open string excitations polarized inM form adjoint U(N)
chiral multiplets. We will focus on the caseN51. To lowest
order ina8, the counting of massless chiral fields has be
worked out.S lives in a family of deformations with dimen
sion b1(S) @25# ~cf. also @26# for a clear discussion!. More
precisely, each basis vector in the tangent space to the s
of deformations may be used to construct a nontrivial h
monic one form onS, and vice versa. Of course the space
such deformations@which has real dimensionb1(S)] cannot
make up our set of chiral multiplets which are built fro
complex scalars: for example,b1(S) need not be even. How
ever, deformations of flat connections of theD6-brane gauge
field on S also map one-to-one onto the space of harmo
one forms onS, roughly because there is a Wilson line of th
U~1! gauge field around each one cycle. Thus for each
ment of the spaceH 1(S) of harmonic one-forms onS one
has two real flat directions which may be described by
complex scalar@5#. In other words, we findb1(S) massless
chiral multiplets, one for each nontrivial one-cycle or ha
monic one-form onS.

Note that if we have branes wrapping several~mutually
supersymmetric! 3-cycles, then we may get additional matt
from any intersection points, in bifundamentals of the U(1)’s
of each cycle. A local example of this was discussed in@27#.
In this work we will discuss branes wrapping single ‘‘prim
tive’’ 3 cycles: however, as explained in@27#, interesting
transitions to this more complicated case can occur as
varies background~closed string! hypermultiplets.

A natural choice of coordinates on the moduli space of
wrappedD6-brane is the following@23,28#. Let $g j% be a
basis forH1(S). Choose minimal area discsD j subject to
the condition that

l
-

a
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]D j5g j , ~2.2!

and let

wj5E
D j

v. ~2.3!

In other words, if there is a holomorphic disc in the relati
homology class ofD, thenwj will be the area. Thewj pro-
vide b1(S) real coordinates. They are complexified b
b1(S) Wilson lines

aj5E
g j

A, ~2.4!

whereA is the U~1! gauge field on the wrapped brane. T
coordinates in Eqs.~2.3! and~2.4! are the real and imaginar
parts of scalar components of theb1(S) chiral multipletsF j
on the brane:

F j5wj1 ia j1•••, ~2.5!

where••• indicates higher components of the superfields

2. Superpotentials and worldsheet instantons

As noted above, it follows from McLean’s theorem@25#
that at lowest order ina8 the brane wrappingS has a moduli
space of dimensionb1(S). So far there may still bea8 cor-
rections which lift these flat directions. To lift moduli, on
would need to generate either D terms or F terms in
low-energy action; we will focus on the superpotential, sin
the chiral multipletsF j are neutral~at least at generic point
in the classical moduli space of the cycle! and do not appea
in FI D terms. At leading order ina8, the superpotentia
W(F) identically vanishes. We now determine to what e
tent a8 corrections of any sort are possible.

In fact, it turns out that there are no corrections to t
open-string superpotential to any finite order ina8: all con-
tributions must come from nonperturbative corrections, a
ing from topologically nontrivial configurations. The argu
ments are almost identical to similar arguments for
heterotic string@11,12#. We will give two.

The first argument is a string theory argument. The~0!-
picture vertex operator for a flat connectionA at zero mo-
mentum on theD6-brane has the form

V5E
]D

Am~X!]aXmdsa, ~2.6!

whereX are coordinates on the brane ands coordinates on
the worldsheetD. Let A be polarized completely internally
so that it corresponds to a choice of Wilson lines around
elements ofH1(S). If X(]D) is a topologically trivial cycle
on S, thenA can be written as an exact formdL. We see
that V vanishes after an integration by parts. Thus topolo
cally trivial disc amplitudes give no nonderivative couplin
~such as superpotential terms! of the imaginary parts of chi-
ral multiplets, to all orders ina8. Holomorphy thus requires
the superpotential vanish to all finite orders ina8.
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If the boundary maps to a topologicallynontrivial cycle
g j,S, this argument fails. Such discs are nontrivial e
ments of the relative homology classH2(M ,S). These
worldsheets will give terms weighted by the instanton acti

e2(wj 1 ia j )/a8, ~2.7!

wherewj is the spacetime area of this disc as in Eq.~2.3!,
andaj is its partner Wilson line~2.4!. Thea8 dependence is
decidedly nonperturbative. Note that to obtain the contrib
tion ~2.7! to the action, the mapX(s) must be aholomorphic
map from the disc toM with the desired boundary, and wit
the normal derivative toX(s) at the boundary taking value
in the pullback of the normal bundle toS; this is a disc
instanton. It follows from standard arguments that only su
holomorphic maps have the correct zero mode count to c
tribute to a superpotential term in the spacetime theory.

The second argument is a spacetime argument. The s
of U~1! Wilson lines on a circle is the dual circle. Thus, an
function of the chiral fields appearing in the effective acti
must be invariant under discrete shifts of their imagina
parts. Holomorphy then requires that the superpotential b
power series in exp(2@wj1iaj#/a8), which again gives a non
perturbative dependence ona8.

3. Examples of three-cycles

The best-known example arises in the Strominger-Y
Zaslow formulation of mirror symmetry@5#: the claim is that
any geometric Calabi-Yau with a geometric mirror can
written as a fibration of special LagrangianT3’s. Mirror sym-
metry is fiberwiseT duality on theseT3’s. D3-branes wrap-
ping these fibers are mapped toD0-branes on the mirror
The T3 hasb153 so all this is in accord with expectation
the mirrorD0-brane and thus the wrappedD3-brane should
have a three-dimensional complex moduli space~which is
the mirror threefold!. Many examples of special Lagrangia
three cycles can be found as fixed loci of real structur
Some examples, which are homeomorphic toRP3, are con-
tained in@6,20#. Note that these have atZ2 Wilson line de-
gree of freedom asp1(RP3)5Z2.

In addition, there has been some discussion of local
noncompact models. Reference@28# contains some genera
discussion of noncompact supersymmetric three cycles
simple example with an isolated disc instanton is the follo
ing. Takez1,2,3 as coordinates onC3, and choosev andV to
be the obvious Ka¨hler form and holomorphic three form
Then the three cycleS defined by

uz1u22t5uz2u25uz3u2, ~2.8!

Im~z1z2z3!50, Re~z1z2z3!>0, ~2.9!

with t positive is a special Lagrangian, and diffeomorphic
S13R2. A generatorg of H1(S) is given by the concrete
choice

g:$~ t1/2eiu,0,0!%, ~2.10!

whereu runs from 0 to 2p. A holomorphic disc with bound-
ary G and areapt is given by
1-3
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Dt :$~z1,0,0!,uz1u2<t !%. ~2.11!

B. B-type branes

In the large-volume, large-complex-structure limit, sup
symmetric B-type branes wrap holomorphic cycles ofM.
One may also examine bound states which can be desc
as gauge bundles on the highest-dimensional branes~cf., for
example,@20# for a discussion!. For simplicity we will focus
on branes wrapping primitive cycles, and in our examples
will discuss cases whereC is a rational curve.

For N ~space-filling! D-branes wrapping a given cycl
C,M one again has a U(N) vector multiplet arising from
massless open strings polarized along the spacetime d
tions. Massless strings polarized alongM give rise to adjoint
chiral multiplets. Again we will focus onN51. for B-type
branes wrappingC the infinitesimal supersymmetric defo
mations of the cycle are holomorphic sections of the norm
bundleNC . The number of such first-order deformations
therefore, the dimensional of the space of holomorphic s
tions,H0(C,NC) ~this is the cohomology group of the bund
NC , not a relative cohomology group!. These are the scalar
in the massless chiral multiplets. There is no guarantee
these deformations do not have an obstruction at hig
order.4 Such obstructions, if they exist, correspond to e
ments of the groupH1(C,NC) @29#. More specifically, given
an element of the cohomology groupH0(C,NC) one may try
to construct a finite deformation by beginning with an infin
tesimal deformation and constructing a finite deformation
a power series.H1 measures the space of possible obstr
tions at each order in this series. Note that it may happen
althoughH1 is nonvanishing, there is still a solution for th
power series and thus a family of cycles. In the end,
obstruction should appear as a higher-order term in the
perpotential for a brane wrapped around this cycle@20#.

Furthermore, deforming the complex structure ofM can
also cause obstructions to~previously existing! deformations
of C. The basis statement is as follows~cf. @30,31#!. One may
use the restriction map toC and the short exact sequence:

0→TC→TmuC→NC→0 ~2.12!

to write a map

r :H1~M ,TM !→H1~C,NC!. ~2.13!

If we perturb the complex structure ofM to first order by
some elementrPH1(M ,TM), a deformation ofC exists
which preservesC as a holomorphic cycle if and only i
r (r)50. Note that couplings of~open-string! chiral multi-
plets to~background closed-string! complex structure param
eters in the superpotential are allowed and generic@20#.

4For, e.g.,C a curve of genusg>1, there are also 2g Wilson line
degrees of freedom which parametrize the flat U~1! bundles onC.
These pair up intog chiral multiplets and provide exactly flat direc
tions. Similar comments apply ifC is a four-cycle withb1(C)Þ0.
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In the end, even counting these chiral multiplets is
harder problem on its face than forA-type branes, as the
number of moduli depends not only on the intrinsic topolo
of the cycle but on the details of its embedding inM. ~This is
already apparent for rational curves in the quintic,
@32,33#.! Nonetheless, one may find a lot of specific e
amples for which computations are possible, especially
rational curves.

Some additional constraints exist as forA-type branes.
First, the computation of the disc contribution to the sup
potential can be reduced to aB-twisted open topologica
field-theory calculation@20#. Again the Kähler parameters
almost completely decouple from the superpotential: inde
the computations of the dimension ofH0(C,NC) and of the
obstruction depend completely on the complex structure.
in addition, all contributions toB-model computations come
entirely from constant maps into the target space@34,22#.
There are no worldsheet instanton corrections and tree-l
s model calculations will suffice: the superpotential can
deduced from classical geometry.

1. Examples of holomorphic curves and superpotentials

Many useful examples of holomorphic cycles exist in t
literature. Several can be found or are referenced in@20#. We
are particularly interested in two-cycles with nontrivial o
structed deformations.

The canonical example is simply a small resolution of t
singular hypersurface inC4:

xy5z22t2n. ~2.14!

~Such a small resolution is consistent with the Calabi-Y
condition as the space is noncompact.! If n51, then
H0(C,NC)50, and the curve is rigid. Ifn.1, thenH0(C,NC)
is one-dimensional—the normal bundle to this curve
O(0)% O(22)—but there is an obstruction atnth order to
deforming this curve@35#. This phenomenon can be de
scribed by a superpotentialW(F)5Fn11 @20#.

It is easy to useW(F) to see the effect of a genera
deformation of complex structure onC. We perturbW(F) to

Wt~F!5Fn111tP~F!1O~ t2!, ~2.15!

whereP(F) is an arbitrary polynomial inF subject only to
the genericity conditionP8(0)Þ0. Solving Wt8(f)50, we
get n solutions for the vacuum expectation value~VEV!

fk~ t !5e2p ik/nS 2
P8~0!

n11 D 1/n

t1/n1•••,

where the dots denote higher-order terms int. The geometric
description of this perturbation of curves with normal bund
O(0)% O(22) to n rigid rational curves was well known
@36#. The geometric perturbation of contractible curves w
normal bundleO(1)% O(23) to rigid curves has recently
been worked out in@37# and can be rephrased in terms of t
perturbation of a superpotential if desired. The geome
description in the case of a generalO(1)% O(23) curve is
1-4



tia

le

m

dl
e.

e

o

e

ry
ur

o

on
to

s

a

e

of

or-

f.
t

one

-

i-
of

liz-
er-
nly
are

ve
m-

cu

in

m,
r
o-
by

y-

t

OPEN STRING INSTANTONS AND SUPERPOTENTIALS PHYSICAL REVIEW D62 026001
not yet worked out, but the introduction of a superpoten
can be expected to clarify the geometry.

2. Digression on holomorphic Chern-Simons theory

Another way to arrive at the superpotential in examp
like Eqs. ~2.14! and ~2.15! is by studying a holomorphic
analog of the Chern-Simons action, discussed in@22,23#.5 In
the following, we will suppress constants which enter har
lessly in our formulas. We think of the Calabi-YauM as
being obtained from the total space of the normal bun
O(0)% O(22) by a modification of the complex structur
We choose holomorphic coordinates (z,z0 ,z1) on the normal
bundle, withz being a coordinate onC, z0 being in O(0),
and z1 in O(22). The curveC is identified with the zero
sectionz05z150. The modification of the complex structur
is realized as usual by perturbing]̄ by a tensorAj̄

i , i.e.,

]̄ j̄ ° ]̄ j̄ 1Aj̄
i
] i , whereAj̄

i is aTM valued~0,1! for on M. We
assume that the curveC remains holomorphic, and want t
understand which deformationszi5f i(z) ( i 50,1) remain
holomorphic. The spaceC` deformations ofC is identified
with the space (f0 ,f1) of C` sections of the normal bundl
NC . The relevant holomorphic Chern-Simons action is

E
C
@f0~ ]̄1Az̄

i
] i !f12f1~ ]̄1Az̄

i
] i !f0#. ~2.16!

Note that in Eq.~2.16! we only use the indexj̄ 5 z̄ in A.
Equation~2.16! expands as

E
C
f0]̄f11f0Az̄

z
]f11f0Az̄

1

2~f1]̄f01f1Az̄
z
]f01f1Az̄

0
!. ~2.17!

We make sense of this by, respectively, identifyingf0 ,f1
with functions and~1,0! forms onC ~as would be expected in
the twisted brane world volume theory@38#!, while, respec-
tively, identifying Az̄

0 ,Az̄
1 with ~0,1! and ~1,1! forms after

pulling back toC. Thus all the terms in Eq.~2.17! are ~1,1!
forms onC and can be integrated.

The variations of Eqs.~2.16! or ~2.17! with respect tof0
andf1 give the conditions that the corresponding curve inX
is holomorphic. In fact, the action of the topological theo
on C actually becomes the superpotential in the fo
dimensionalN51 theory arising from wrapping aD5 brane
on C. This is because the holomorphic Chern-Simons the
is the string field theory for the open string topologicalB
model@22#, and therefore its action is the generating functi
of the topological correlation functions which give rise
superpotential terms in the physical theory.

To illustrate this fact, we now show that we can choo
our tensorA so that Eq.~2.17! becomesW(F)5Fn11. Since
the obstructions to deformingC lie in H1(NC)

5We thank C. Vafa for pointing this out to us, and D. Diacones
for related discussions.
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5H1
„O(22)…, we choose ourA to have Az̄

1
5z0

ndz̀ dz̄,

while the otherAz̄
i vanish ~we can always choose such

gauge!. Then the constant section (f0 ,f1)5(t,0) is holo-
morphic provided we settn50. So thisA produces the re-
quired geometry.

The variation of Eq.~2.17! with respect tof1 shows that
f0 is holomorphic. The variation of Eq.~2.17! with respect
to f0 shows that]̄1 is a multiple off0

n . Substituting these
back into Eq.~2.17! ~and performing the integral over th
curveC, which just produces a volume factor! gives a mul-
tiple of f0

n11, as claimed. This proves that for anyO(0)
% O(22) curve, the superpotential will be a polynomial
degreek for somek ~or will vanish identically!—k is the
only invariant of the complex structure in some neighb
hood of the curve.

3. Another example

Another example which we will use was detailed in Re
@39# ~see also Sec. 9 of@31#.! Here one has at a specific poin
in the complex structure moduli space anA1 singularity fi-
bered over a genus-g curve S. At this point the collapsing
cycles obviously form a family which is preciselyS. Defor-
mations of the complex structure ofM destroy this family,
generically leaving 2g22 isolated curves. One may find 2g
three-cycles by sweeping the collapsing curves over the
cycles ofS, mappingH1(S) to H3(M ).6 This can be lifted to
a map fromH (1,0)(S) into H (2,1)(M ).H1(M ,TM) @39,31#.
This givesg-independent first-order deformations of com
plex structure.7 We can use the mapr Eq. ~2.13! to project
the relevant deformation ontoH1(N) for each fiber of this
collapsing surface. Now the spacesH1(N) are the fibers of a
bundle overS, and this bundle is identified with the canon
cal bundle ofS. So Eq.~2.13! gets included the sequence
maps

H (1,0)~S!→H1~M ,TM !→H0~S,KS!. ~2.18!

This says two things. First of all, first-order differentials onS
lead to first-order deformations of complex structure, rea
ing g deformations of complex structure. Second, upon p
turbing by such a complex structure deformation, the o
curves which survive the deformation are those which
located at zeros of the associated section ofKS . Thus gen-
erally we will find a set of isolated curves with only massi
chiral multiplets. However, at codimension one in the co

6This is closely related to the formula for the superpotential
@40#. Fixing a points0PS, then a path froms0 to sPS sweeps out
a 3-chain inM, which can be integrated over a holomorphic 3-for
defining a function ofs. If we define the potential this way in ou
context, there is a multiplicative ambiguity from the choice of h
lomorphic 3-form, reflected in the description in the main text
the choice of isomorphismH (2,1)(M ).H1(M ,TM).

7If M arises from Batyrev’s construction of Calabi-Yau toric h
persurfaces by blowing up the curveS of A1 singularities, these
deformations of the complex structure ofM are those which are no
realizable by polynomial toric deformations.
1-5
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plex structure moduli space, zeros of the section ofKS will
coincide and the resulting curve will have higher multipli
ity: their deformations will be massless but obstructed
some higher, nontrivial order.

A superpotential which reflects this geometry be co
structed as follows. Let the complex structure deformation
induced as above from an elementvPH (1,0)(S). At v50
the curve lives in a family which is preciselyS so that a
deformation of a curve atzPS described byN can also be
written as an elementfPTz

(1,0)S. One may then write the
superpotential as

W~F;v!5^v,F&1
1

2!
^]^v,F&,F&

1
1

3!
^]^]^v,F&,F&,F&1•••. ~2.19!

Here F is the superfield associated tof,] is the Dolbeault
operator onS and ^ , & is the usual inner product betwee
forms and vectors. It is understood that one is to evaluate
inner product at the pointpPS around which one is expand
ing, and convergence follows from the convergence of
power-series representation ofv. For S of genusg, the ex-
pansion in Eq.~2.19! can be truncated after 2g21 terms
without changing the location and structure of the critic
points. The closed string complex structure moduli act
parameters in the superpotential, through the choice ofv.

Let us explore the properties of Eq.~2.19! slightly more
explicitly, to illustrate its features. Consider expanding E
~2.19! about some point onS wherev has an expansion in
local complex coordinatez:

v;zndz. ~2.20!

We can represent the scalar field, which we are thinking o
a tangent vector toS, asf]/]z with f complex. Then, ex-
panding Eq.~2.19! aroundz50, we find

W~F!;Fn11.

For n50 ~i.e., around generic points onS) there is no su-
persymmetric vacuum, while forn.0 there are supersym
metric vacua. Forn51, the vacuum is massive; forn.1
there is a massless field, and the vacuum splits inton21
massive vacua upon small perturbations of the comp
structure ofM @just as in the situation of Eq.~2.15!#. ForS of
genusg, v will generically have 2g22 isolated zeros, giv-
ing rise to 2g22 massive supersymmetric vacua at gene
points in the space of background closed string parame
At various codimensions in the closed string moduli spa
as one further specializes the multiplicities of the zeros ofv,
these 2g22 vacua merge in various combinations to yie
theories with massless fields obstructed by higher order
tentials.

A simpler way to write Eq.~2.19! locally onS is to write
v5d fv for a locally defined function onS. Locally, such an
f can be thought of as a function off. Then we simply have

W~F,v!5 f v~F!.
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While this formula is simpler in form than Eq.~2.19!, it does
not capture the global structure of the moduli spaceS.

The above considerations are easily adapted to the m
general situation considered in@39#, where anAN singularity
is fibered overS. If we denote the collapsing curve a
C1ø, . . . ,øCN , then for eachCj we getg deformations of
complex structure arising as in Eq.~2.18!, yielding gN com-
plex moduli. But we also have connected subs
CkøCk11ø, . . . ,øCk1r to which the above analysis ap
plies. But since the first map in Eq.~2.18! depends linearly
on the individualCj , including these connected subsets do
not give rise to any new complex structure deformations.
we get N(N11)/2 superpotentials of the form~2.19! on
N(N11)/2 copies ofS, each of which depends on th
gN complex moduli~only g of which appear in any one
superpotential!. Each of these superpotentials contro
the obstructions to deforming curves of the for
CkøCk11ø, . . . ,øCk1r , and 2g22 curves of this type
survive a generic deformation of complex structure.

III. DISC INSTANTONS

Type II string theory in the presence of aD-brane on a
given special Lagrangian submanifold has the same net n
ber of worldsheet~and spacetime! supersymmetries as a he
erotic ~0,2! model; and as with heterotic~0,2! models, the
nonrenormalization theorem for the spacetime superpote
is spoiled by worldsheet instanton effects. In light of resu
for ~0,2! models@12#, it is fair to ask whether the generi
D6-brane configuration is nonperturbatively stable.

We expect direct calculations of instanton effects to
difficult. But instantons in supersymmetric theories gener
fermion zero modes which provide selection rules for co
formal field theory ~CFT! correlators. Using the rule o
thumb that allowed terms are generic, we will see that th
cycles with an isolated disc instanton are destabiliz
nonperturbatively.8 The argument is quite similar to that fo
heterotic~0,2! models.

The easiest way to count the zero modes for an isola
holomorphic disc is to begin with the amplitude for th
sphere and get the disc by orbifolding with respect to a r
involution, which will cut the number of zero modes in ha
For an isolated sphere, the superconformal symmetry
gether with an index theorem shows that there are four
lomorphic zero modes and four antiholomorphic zero mod
@12,41#, so we expect four fermion zero modes on the dis

Consider a singleD6-brane wrapping a special Lagran
ian three-cycleS. The complex modulusf5w1 ia is asso-
ciated with a cyclegPH1(S), using the notation and defi
nitions of Sec. II A. Here we assume the isolated instan
corresponds to a discD such that]D5g andD has minimal
area. The most obvious, lowest-order term consistent w
our perturbative nonrenormalization theorem is the expon
tial

8Holomorphic discs ending on special Lagrangian cycles
Calabi-Yau threefolds are generically isolated@22#.
1-6
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W~F!5e2F/a8, ~3.1!

where F is the superfield corresponding tof. This will
clearly destabilize the wrappedD6-brane, at least locally.

We will search for the superpotential~3.1! by examining
small fluctuationsF j away from the above classical config
rationF05f. Herej is an index inH1(S). The lowest-order
terms directly computable via a CFT correlator will be tho
arising from the cubic term

F iF jFke
2f/a8.

We will focus on the term

Scubic5CE d4xf if jFk , ~3.2!

whereFk is the auxiliary field inFk . Note that in the reduc-
tion to four dimensions, the operators above are arrived a
contour integrals inS, so C is proportional to a triple inte-
gral.

The vertex operators which enter in the calculation of E
~3.2! are easily presented in the covariant RNS formali
@42# ~cf. @20# for a general discussion of the CFT calculati
of open-string superpotential terms!. The (21)-picture zero-
momentum vertex operator for the scalar componentf j is

Vf
(21),j5um

j ~X!cme2f̃, ~3.3!

wheref̃ is the bosonized superconformal ghost@42#, um
j is

the harmonic one-form~associated withg j ) on the 3-cycle,
andcm is a fermion with Dirichlet boundary conditions. Th
~0!-picture vertex operator for the auxiliary field is@43#

VF
(0),j5Vrmn~X!us

j gsrcmcn. ~3.4!

Here V is the ~3,0! form, with the coordinates~but not the
indices! restricted toS. Equation~3.4! is obtained by apply-
ing the unit spectral flow operatorVmnrcmcncr as in
@43,10#.

The three-point function

^Vf
(0),iVf

(21),jVF
(21),k& ~3.5!

has the correct fermion and ghost number to be nonvan
ing; in an instanton background, the four fermions in t
vertex operators in Eq.~3.5! can soak up the relevant zer
modes. Note that we are computing the integrand of
triple integral definitionC in Eq. ~3.2!. Since holomorphic
maps will preserve the order of marked points on the bou
ary, the ordering of Eq.~3.5! will be fixed for a given set of
positions in this integrand.

This superpotential term can equivalently be computed
a correlator in the topologicalA-model open string theory
@22,20#. Here one is computing the contribution to Eq.~3.5!
@or more familiarly, a Yukawa coupling related to Eq.~3.5!
by supersymmetry# in a sector where the map of the world
sheet to spacetime is a disc whose boundaryg,S is topo-
logically nontrivial. The path-integral localizes onto th
space of holomorphic maps, and the contribution is
02600
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g
dx1dx2dx3Ai~x1!Aj~x2!Ak~x3! ~3.6!

~suppressed by the exponential of the area of the holom
phic disc!, where the gauge fieldsAi can be identified with
the one-formsu i in Eq. ~3.3!. Once again, for given position
in the integrand, the ordering of the vertex operators
Ai , j ,k must match the ordering ofx1,2,3, respectively.

The result is that the superpotential~3.1! is generic for an
isolated instanton. With some interpretation added, this st
ment matches a calculation in Ref.@22#. There it is shown
that the string field theory for the topological open stringA
model is equivalent to Chern-Simons theory onS with in-
stanton corrections to the action. This instanton correct
can be interpreted precisely as the superpotential we h
calculated, as it generates the topological correlator we h
discussed. Note that in@22#, the dependence on the area
the disc was added as a convergence factor, whereas in
discussion it is required by spacetime supersymmetry.

The topological string theory representation of the sup
potential allows us to write the full worldsheet instanton co
tribution to the CFT correlator~3.5!. First, note that while we
have discussedAi as a harmonic form, we can modify it b
adding a BRST-trivial piece to give it support only in a
arbitrarily small neighborhood around a two-cycleb i which
is Poincare´ dual to g i . The result is as follows. Denote b
d$ml %

$na% ( i , j ,k) the number of holomorphic maps from a dis

to M where the imageD,M has the following properties:9

~i! @]D#5( lmlg l .
~ii ! The vertex operatorsVi , j ,k are mapped in cyclic orde

to intersections ofg5]D with b i , j ,k , respectively.10

~iii ! D2( lmlDl , which is a closed two-cycle inM, is in
the homology class(anaKa . Then, the three-point function
receives a contribution

^VF
i Vf

j Vf
k &; (

ml.0,na>0
S E

]D
u i D S E

]D
u j D S E

]D
ukD

3d$ml %
$na%

~ i , j ,k! )
l 51

b1(S)

e2ml (wl1 ial )/a8 )
a51

h1,1(M )

e2nata

~3.7!

from disc instantons, whereta denotes the integral of the
Kähler form overKa ~and for simplicity we are setting the
closed string backgroundB field to zero!. Although we have

9As with ‘‘numbers’’ of rational curves in mirror symmetry, th
correct notion ofd when there are families of discs and/or includin
multiple covers would require much further discussion; we will
content here to be schematic. A proposal for the multiple co
contribution has recently been worked out by H. Ooguri and
Vafa @44#.

10One has to be careful if two vertex operators correspond to
same cycle. The support ofA can be made arbitrarily small bu
finite. In this way nonzero contributions still generically come fro
the vertex operator insertions mapping to different points ing.
1-7
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mostly used the language of the topological theory in de
ing this result, it also holds for the three-point function in t
physical theory.

The same kind of instanton sum also appears in@23#,
where the interpretation in terms of a superpotential
wrapped branes~and in particular the fact that these effec
serve to obstruct the deformations of branes wrapped on
cial Lagrangian cycles! was not discussed.

Coupling to closed string background fields

It is clear from the form of the three-point functions~3.7!
that the superpotential depends on the closed string b
ground Kähler moduli, which enter through the worldshe
instanton actione2ta. The dependence of the disc instant
generated superpotential on Ka¨hler moduli, and the fact tha
it does not depend on the background complex structu
moduli in the IIA theory, is consistent with the nonrenorma
ization result of@20#.

We can directly probe the dependence of the superpo
tial on closed string moduli by computing the CFT correla

^VK
(21,21),aVF

(0),j&, ~3.8!

where VK
(21,21),a is the vertex operator for a closed-strin

Kähler deformation. Again, the vertex operators in Eq.~3.8!
can absorb the fermion zero modes which are present in
instanton background. In fact, the ‘‘mirror’’ couplings o
open strings to background complex moduli in the super
tential generically exist at tree level in theB model @20#—
this is clear from the examples of Sec. II B, where a sm
perturbation of complex structure can obstruct families
holomorphic curves. The couplings~3.8! must then similarly
exist, but due to Peccei-Quinn symmetries they should a
at the nonperturbative level in both the closed and o
string worldsheet instanton expansions.

VK
a represents an integral~1,1!-form va which could be

used to perturb the Ka¨hler form of M. We can chooseva to
have support only infinitesimally near the four-cycleLa,M
Poincare´ dual toKa . Then, Eq.~3.8! has the expansion

^VK
(21,21),a&; (

ml ,nb>0
S E

D
vaD S E

]D
u j D d$ml %

$nb%
~a, j !

3 )
l 51

b1(S)

e2ml (wl1 ial )/a8 )
b51

h1,1(M )

e2nbtb,

~3.9!

whered$ml %
$nb%(a, j ) counts the number of holomorphic maps

discsD,M which pass throughLa at the insertion point of
VK

a andb j at the insertion point ofVF
j , and which in addition

have@]D#5( lmlg l and @D2( lmlDl #5(bnbKb .

IV. DISCUSSION

Space-filling D-branes wrapping supersymmetric cycl
in Calabi-Yau manifolds provide one of the most natu
classes ofN51 supersymmetric models in string theory, a
are attractive as concrete realizations of ‘‘brane world’’ s
02600
-

r

e-

k-

e

n-
r

an

-

ll
f

se
n

l

-

narios. In this paper, we have shown that the theories wh
arise fromD6-branes wrapping supersymmetric three-cyc
are in many ways analogous to heterotic~0,2! models. In
particular, although they are supersymmetric to all orders
a8, nonperturbative worldsheet effects can generate supe
tentials and, perhaps, break supersymmetry.

These models differ from heterotic theories, however,
that mirror symmetry provides a dual description where
nonperturbative superpotential is computable at tree leve
s-model perturbation theory. This should be a powerful to
most known dualities ofN51 models, like heterotic–
F-theory duality, relate instanton computations to other
stanton computations~with worldsheet instantons mappin
to Euclidean wrapped branes of various sorts@17#!. The
present situation is considerably rosier, and it will be ve
interesting to exploit this to sum up instantons in this class
N51 and it will be very interesting to exploit this to sum u
instantons in this class ofN51 string vacua.

The cases discussed in Sec. II B~on the B-model side!
should provide ideal test cases. In each case, one can re
~on a 5-brane wrapping a holomorphic curve! a theory with
massless chiral fields, constrained by a higher-order supe
tential. The mirrorD6 theory should provide us with a
example of a brane wrapping a supersymmetric three-c
S with b1(S).0, but without a moduli space of the ex
pected dimension. By the nonrenormalization theorem
Sec. II A, the moduli space on theA-model side must be
lifted by a disc instanton generated superpotential. Work
explicitly construct the mirror cycles, and compute the r
evant superpotentials, is under way@21#. Note that nonper-
turbative superpotentials which obstruct deformations
branes wrapped on three-cycles can resolve the puzzle
mirror symmetry raised by Thomas in@45#. On the other
hand, we expect, e.g., the supersymmetricT3 used in@5# to
derive mirror symmetry will survive instanton corrections.
the mirror picture this is obvious~since deformations of a
point are unobstructed!, and in the direct analysis presum
ably any holomorphic discs with boundary on theT3 would
come in families and cancel in their contribution to the s
perpotential.

In the regime where there are ‘‘small’’ holomorphic disc
new interesting phenomena should also occur. For insta
there are arguments in the mathematics literature tha
some cases the classical moduli spaces of special Lagran
three-cycles will be manifolds with boundary~see Sec. V of
@28#!. This cannot be the case for physical applications of
sort we have discussed, involving wrapped branes in st
theory. The moduli space~including Wilson line degrees o
freedom! is that of a 4d N51 supersymmetricD-brane field
theory. Assuming supersymmetry is not broken, the quan
moduli space of supersymmetric ground states must b
Kähler manifold; there is no known dynamics that can cre
boundaries at codimension one in the moduli space ofd
N51 supersymmetric theories. The argument of@28# in-
volves the fact that a holomorphic disc with boundary in t
three-cycle is becoming very small; therefore, it is likely th
some analog of the phenomena discussed in@14# is occur-
ring. Just as one can useu angles to go around the bound
aries of the classical Ka¨hler cone and find intrinsically stingy
1-8
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OPEN STRING INSTANTONS AND SUPERPOTENTIALS PHYSICAL REVIEW D62 026001
Landau-Ginzburg phases of Calabi-Yau compactification
seems likely that one can use Wilson lines to go around
would-be boundary of moduli space discussed in@28# and
find new, ‘‘quantum’’ supersymmetric three-cycles.
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